

Open Reference Implementation

V1.0

Deliverable D3.5

29/08/2019

Ref. Ares(2019)5493754 - 30/08/2019

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 2 of 33

ID & Title : Open Reference Implementation

Version : V1.0
Number of
pages :

33

Short Description

Revision history

Version Date Modifications’ nature Author

V0.1 01.06.2019
Document initialized and
structure created

Jonas Baude

V0.2 17.06.2019 First draft Jonas Baude

V0.3 31.07.2019 Merging WP feedback Jonas Baude

V0.4 08.08.2019 Final draft for TC review Amir Ahmadifar

V0.5 27.08.2019 Finalization Jonas Baude

V1.0 29.08.2019 Submission to the EC Jonas Baude

Accessibility

☒Public ☐ Consortium + EC ☐ Restricted to a specific
group + EC

☐ Confidential + EC

Owner/Main responsible

Name(s) Function Company Visa

Marco Cupelli RWTH -

Author(s)/contributor(s): company name(s)

Jonas Baude, Marco Cupelli, Amir Ahmadifar: RWTH Aachen University
Olivier Genest, Pierre Mauvy: TRIALOG

Reviewer(s): company name(s)

Company

 Enedis, Avacon, CEZ Distribuce, E.ON, Enexis, RWTH, TRIALOG

Approver(s): company name(s)

Company

 Enedis, Avacon, CEZ Distribuce, E.ON, Enexis, RWTH

Work Package ID WP3 Task ID 3.1.3

Disclaimer: This report reflects only the author's view and the Agency is not responsible for

any use that may be made of the information it contains.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 3 of 33

EXECUTIVE SUMMARY

The goal of this document is to provide an overview for the reference implementation

including the general code structure of the InterFlex API platform as specified in deliverable

3.4. It provides an overview of the structure and organization of the sources as well as the

setup of the cloud platform. Furthermore, as a demonstration, the request-based flexibility

negotiation has been executed to verify that the API behaves as expected.

During the two phases of defining the API abstract test suite (deliverable 3.6) and the

reference implementation (deliverable 3.5), a certain level of indefiniteness was identified

in the API specification. This lead to the identification of some findings and their respective

solutions/recommendations which could be used to extend the specification and remove the

unclearness.

This document is structured in four main chapters:

Chapter 1, Introduction, provides an overview of the InterFlex API. Afterwards, it provides

a brief summary of the respective tasks for the implementation of the proposed API platform.

Chapter 2, Reference Implementation overview, describes the code base structure

including the software requirements and following the Fireware design principles as the

reference infrastructure for the implementation.

Chapter 3, InterFlex API Implementation, presents the main implementation including an

exemplary request-based flexibility negotiation test scenario. This chapter also lists the

findings, which could improve the API specification.

Chapter 4, Outlook, provides a summary of the deliverable and the potential future work to

extend the reference implementation of the proposed API platform.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 4 of 33

TABLE OF CONTENT

1 INTRODUCTION .. 8

1.1 Scope of the document ... 9

1.2 InterFlex API ... 9

1.3 Related Tasks .. 10

1.4 Deliverable Organization ... 10

2 REFERENCE IMPLEMENTATION OVERVIEW ... 11

2.1 Software Requirements .. 11

2.2 Infrastructure .. 11

2.3 Structure of the Code Base .. 12

2.4 Summary .. 13

3 INTERFLEX API IMPLEMENTATION ... 14

3.1 Server Backend Interface Implementation .. 14

3.2 API Client Implementation ... 15

3.2.1 Authentication .. 15

3.2.2 Flexibility Requests .. 16

3.2.3 Flexibility Offers ... 19

3.2.4 Flexibility Activation ... 21

3.2.5 Flexibility Activation Acknowledgement .. 23

3.2.6 Flexibility Activation Unacknowledgement 25

3.3 Extensions to API Specification .. 27

3.4 InterFlex API Verification .. 28

3.5 Summary .. 29

4 OUTLOOK... 30

5 BIBLIOGRAPHY ... 31

A. APPENDIX... 32

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 5 of 33

LIST OF FIGURES

Figure 1-1 Map identifying the demo sites in the context of this project8
Figure 1-2 Design Overview of InterFlex API ...9
Figure 1-3 Workflow and Task Relation .. 10
Figure 2-1 InterFlex Flexibility Platfrom Architecture ... 12
Figure 2-2 Source directory structure .. 13

Figure 3-1 API resource structure ... 14
Figure 3-2 Request-based Flexibility Negotiation ... 29

LIST OF TABLES

Table 1 Mapping of Services and Implementations ... 12
Table 2 Arguments of authenticate function .. 16
Table 3 Return values of authenticate function .. 16

Table 4 Arguments of refresh function ... 16
Table 5 Return values of refresh function ... 16

Table 6 Arguments of ret_request_id ... 17
Table 7 Return values of get_request_id ... 17
Table 8 Arguments of post_request ... 17
Table 9 Return values of post_request ... 17
Table 10 Arguments of get_all_requests ... 17

Table 11 Return values of get_all_requests ... 18
Table 12 Arguments of delete_request ... 18

Table 13 Return values of delete_requests .. 18
Table 14 Arguments of create_requests .. 18
Table 15 Return values of create_requests .. 18
Table 16 Arguments of get_offer_id .. 19

Table 17 Return values of get_offer_id .. 19
Table 18 Arguments of post_offer ... 19
Table 19 Return values of post_offer ... 19
Table 20 Arguments of get_all_offers .. 20
Table 21 Return values of get_all_offers ... 20

Table 22 Arguments of delete_offer .. 20
Table 23 Return values of delete_offer .. 20

Table 24 Arguments of create_offer .. 21
Table 25 Return values of create_offer .. 21

Table 26 Arguments of get_activation_id .. 21
Table 27 Return values of get_activation_id .. 21
Table 28 Arguments of post_activation .. 21
Table 29 Return values of post_activation ... 22
Table 30 Arguments of get_all_activations .. 22
Table 31 Return values of get_all_activations .. 22

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 6 of 33

Table 32 Arguments of delete_activation .. 22
Table 33 Return values of delete_activation .. 22
Table 34 Arguments of create_activation .. 23
Table 35 Return values of create_activation .. 23
Table 36 Arguments of post_activation_ack ... 23

Table 37 Return values of post_activation_ack ... 24
Table 38 Arguments of get_all_activation_acks ... 24
Table 39 Return values of get_all_activation_acks ... 24
Table 40 Arguments of delete_activation_ack .. 24
Table 41 Return values of delete_activation_ack ... 24
Table 42 Arguments of create_activation_ack .. 25
Table 43 Return values of create_activation_ack ... 25
Table 44 Arguments of post_activation_nack ... 25

Table 45 Return values of psot_activation_nack .. 25
Table 46 Arguments of get_all_activation_nacks ... 26
Table 47 Return values of get_all_activation_nacks ... 26
Table 48 Arguments of delete_activation_nack ... 26
Table 49 Return values of delete_activation_nack ... 26

Table 50 Arguments of create_activation_nack ... 27

Table 51 Return values of create_activation_nack ... 27
Table 52 Listed extensions to API specification ... 28

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 7 of 33

LIST OF ACRONYMS

InterFlex Interactions between automated energy systems and flexibilities brought by energy

market players

EU European Union
TRL Technology Readiness Level
API Application Programming Interface
DSO Distribution System Operator
ATS Abstract Test Suite
HTTP Hypertext Transfer Protocol
PEP Policy Enforcement Point
PDP Policy Decision Point
IDM Identity Management
GE Generic Enabler
URL Uniform Resource Locator
URI Uniform Resource Identifier
ID Identifier
ACK Acknowledgment
NACK Negative Acknowledgment
WP Work Package

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 8 of 33

1 INTRODUCTION

The European Union (EU) Project InterFlex (Interactions between automated energy systems

and flexibilities brought by energy market players) is a response to the Horizon 2020 Call for

proposals, LCE-02-2016 (“Demonstration of smart grid, storage and system integration

technologies with increasing share of renewable: distribution system”).

This Call addresses the challenges of the distribution system operators in modernizing their

systems and business models in order to be able to support the integration of distributed

renewable energy sources into the energy mix. Within this context, the LCE-02-2016 Call

promotes the development of technologies with a high TRL (technology readiness level) into

a higher one.

InterFlex explores pathways to adapt and modernize the electric distribution system in line

with the objectives of the 2020 and 2030 climate-energy packages of the European

Commission. Six demonstration projects are conducted in five EU Member States (Czech

Republic, France, Germany, the Netherlands and Sweden) in order to provide deep insights

into the market and development potential of the orientations that were given by the call

for proposals, i.e., demand-response, smart grid, storage and energy system integration.

With Enedis as the global coordinator and CEZ Distribuce as the technical director, InterFlex

relies on a set of innovative use cases. Six industrial-scale demonstrators are being set up in

the participating European countries. Figure 1-1 shows a map identifying the demo sites

around Europe.

Figure 1-1 Map identifying the demo sites in the context of this project

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 9 of 33

Through these demonstration showcases, InterFlex assesses how the integration of the new

solutions can lead to a local energy optimization. Technically speaking, the success of these

demonstrations requires that some of the new solutions, which are today at TRLs 5-7, are

further developed reaching TRLs 7-9 to be deployed in real-life conditions.

1.1 Scope of the document

This deliverable presents the reference implementation of the InterFlex API as specified in

D3.4. The written report provides an overview on the structure and organization of the

sources as well as the setup of the cloud platform. The implementation of the InterFlexAPI

and the cloud platform are available on [1].

1.2 InterFlex API

Figure 1-2 provides a general overview on the InterFlex API and the flexibility cloud platform

as described in Deliverable 3.4 [2]. The first release of the InterFlex API specification focuses

on providing an interface for flexibility activation and pricing negotiation between

stakeholders such as DSOs and flexibility aggregators. Following the specification in D3.4,

the platform supports internal and external services. However, the reference

implementation focuses on the internal key services of the platform such as flexibility

activation and identity management in order to prove the feasibility of the API specified

formally in Deliverable 3.4.

Figure 1-2 Design Overview of InterFlex API

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 10 of 33

1.3 Related Tasks

After formally specifying the API in Deliverable 3.4, the specification served as input for
the Abstract Test Suite (ATS) (cf. Deliverable 3.6) definition and the reference

implementation (this report). During both tasks, major and minor gray zones in the
specification have been identified. These findings have been used to extend and update
the specification slightly. These changes and any future updates are documented in the

repository of the reference implementation.

Figure 1-3 illustrates the relation of these tasks as well as the workflow within WP3.

Figure 1-3 Workflow and Task Relation

1.4 Deliverable Organization

The next chapter of this report provides an overview on fundamental implementation

decisions for the reference implementation of the flexibility API and on the general structure

of the code base. Furthermore, it contains a brief discussion on the realization of the cloud

platform and all its individual components. The third chapter presents the main

implementation of the flexibility server backend and client package while focusing on the

main client API functions. Furthermore, the third chapter contains a list of specification gray

zones that have been identified during the ATS definition and the implementation phase.

Finally, chapter four provides an outlook.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 11 of 33

2 REFERENCE IMPLEMENTATION OVERVIEW

This chapter provides an overview on the reference implementation of the InterFlex API and

the setup of the used cloud platform. Firstly, software requirements and the choice of

programming languages for reference implementation are discussed. Secondly, the utilized

combination of FIWARE enablers and interflex service implementations is presented. Finally,

this chapter provides an overview of the code base structure for the reference

implementation.

2.1 Software Requirements

The InterFlex API client is implemented as a Python 3 [3] package. Python has been chosen

as it is a popular general purpose and high level programming language that is commonly

used for developing desktop applications, command line tools, and web applications. It

should simplify the reusability and customizability of the API. The latest version of the

InterFlex API client requires a Python 3.6 interpreter (or newer) and depends on the requests

[4] package for HTTP Rest APIs and the json [8] package for serializing and deserializing JSON

(part of standard library).

The InterFlex API server backend is implemented in GO programming language [5]. The

language has been chosen due to its native support of concurrency and due to its

compilability allowing for an efficient and scalable backend implementation. Besides a

variety of packages from the standard library, the backend implementation uses the

gorilla/mux [6]. HTTP request router for matching API requests to their respective handler.

Both components, the InterFlex API client and the InterFlex API server backend, interact

with the InterFlex flexibility platform. The reference implementation of the cloud platform

is based on the open source cloud platform FIWARE [7]. The following sections contain a

more detailed description of the cloud platform and the utilized FIWARE enablers.

2.2 Infrastructure

The InterFlex Flexibility Platform serves as a central instance, providing services over the
interflex API. Its reference implementation is based on FIWARE [7].

Figure 2-1 depicts a set of components forming a minimal setup of the platform. Following

the FIWARE design principles, the flexibility platform uses OpenStack as IaaS platform

running the individual services on top.

All API clients (e.g., DSO or aggregator) connect to the Policy Enforcement Point (PEP) Proxy.

It receives the client requests and queries the Identity Management (IDM) service whether

the client has sufficient permissions to perform the requested action. In the current setup,

the IDM also serves as a Policy Decision Point (PDP).

The PEP proxy forwards authorized client requests to the InterFlex Service, cf. Section 2.1.

The InterFlex service implements the server backend of the API by receiving and forwarding

client requests to the related platform services such as IDM, Database, or external services.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 12 of 33

Figure 2-1 InterFlex Flexibility Platfrom Architecture

For the reference implementation, a set of so-called Generic Enablers (GEs) from the FIWARE

catalogue [7] have been used to realize general cloud platform functionality such as identity

management. Table 1 states the chosen generic enablers.

Service Implementation Language Description

API Client InterFlex API Client Python Client reference
implementation

PEP Proxy Wilma JavaScript Generic FIWARE Enabler

IDM Keyrock JavaScript Generic FIWARE Enabler

InterFlex Service InterFlex API Server GO lang Server reference
implementation, considerable
as domain specific FIWARE
Enabler

Database FIWARE Orion C++ Generic FIWARE Enabler

Table 1 Mapping of Services and Implementations

2.3 Structure of the Code Base

The code base available at [1] contains all components mentioned in Section 2.1 and Section

2.2. The main repository provides a general readme, documentation, and some examples on

how to use the API and the platform. Furthermore, the repository contains three

submodules:

- Client API

- Server Backend

- Platform

Figure 2-2 shows the general structure of the code base repository.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 13 of 33

Figure 2-2 Source directory structure

2.4 Summary

The InterFlex Flexibility Platform consists of several cloud services. The presented reference

implementation is based on the FIWARE cloud platform and a set of its generic enablers. The

flexibility API is implemented in two components: a server and a client implementation

offering the full functionality specified in Deliverable 3.4 [2]. All components are publicly

available on [1].

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 14 of 33

3 INTERFLEX API IMPLEMENTATION

This chapter presents the implementation of the server backend and the client package of

the InterFlex flexibility API while focusing on the interface of the client API. Furthermore,

this chapter includes a list of gray zones of the formal API specification that have been

identified during ATS definition phase and reference implementation phase.

3.1 Server Backend Interface Implementation

The server backend of the InterFlex API serves as a single entry point to the flexibility

platform offering a RESTful HTTP API. The resources of the API are hierarchically structured

in a way that allows a policy decision based the accessed URI and the applied HTTP method.

The hierarchical structure for present implementation is depicted in Figure 3-1

Figure 3-1 API resource structure

For example, a client can request an access token from the server backend by posting an

authentication request (cf. D3.4) encoded as ‘application/x-www-form-urlencoded’ content as

shown in Listing 1.

/interflex/api/v1

/authentication

/token

/refresh

/dsos/{dsoId}

/flexibilityRequests

/flexibilityActivations

/aggregators

/flexibilityOffers

/flexibilityACKs

/flexiblityNACKS

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 15 of 33

Listing 1 Authentication Request Body

to the URI listed in Listing 2.

Listing 2 Authentication Token request URL

Upon successful authentication, the server responds a json formatted authorization response

in the form shown in Listing 3.

Listing 3 Json formatted Authentication Resonse Object

A list of all currently supported URIs is attached to the appendix of this report on page 32.

3.2 API Client Implementation

The client API reference implementation is provided as a Python package consisting of the

following six modules in the latest version: authentication, flexibilityRequest,

flexibilityOffer, flexibilityActivation, flexibilityActivationACK, flexibilityActivationNACK.

This allows for a minimal combination of modules depending on the user needs. The following

subsections provide a more detailed discussion on each module.

3.2.1 Authentication

The authentication module implements two functions allowing for authentication against

the identity management of the flexibility platform, namely authenticate() and

refresh(). The authenticate function expects user credentials as arguments and returns

the authentication response object (cf. D3.4) containing an access token, the token type, a

token expiration time, and a refresh token. The refresh function expects the latest valid

refresh and returns a new authentication response. The following two tables provide the full

function declarations.

“grant_type=password&username=demo&password=demo&client_id=client&client_secret=client”

http://hostname:port/interflex/api/v1/authentication/token

 {
 "access_token":"2YotnFZFEjrtGzv3JOkFSfd",
 "token_type":"bearer",
 "expires_in":3600,
 "refresh_token":"tGzv3JOkYotnFCsicMWpAA",
 }

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 16 of 33

3.2.1.1 authenticate(host, port, username, user_secret, client_id,

client_secret, version=”v1”):

This function sends an authentication request and returns an authentication response form

the server.

Argument Type Description
Host String Hostname or IP address of the server

port String Port for API entry point

username String Username of user to be authenticated

user_secret String Secret of user to be authenticated

client_id String ID of the client application (created by IDM)

client_secret String Secret of the client application (created by
IDM)

Table 2 Arguments of authenticate function

Return Values Type Description
access_token String Access token to be included in further requests

token_type String Token type, fixed to “bearer”

expires_in Integer Token lifetime

refresh_token String Refresh token that can be used to obtain a new
token

Table 3 Return values of authenticate function

3.2.1.2 refresh(host, port, refresh_token, client_id, client_secret, version=”v1”):

This function refreshes an access token give a valid refresh token.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

refresh_token String Refresh token received with previous access
token

client_id String ID of the client application (created by IDM)

client_secret String Secret of the client application (created by
IDM)

Table 4 Arguments of refresh function

Return Values Type Description
access_token String Access token to be included in further requests

token_type String Token type, fixed to “bearer”

expires_in Integer Token lifetime

refresh_token String Refresh token that can be used to obtain a new
token

Table 5 Return values of refresh function

3.2.2 Flexibility Requests

The flexibilityRequests module handles and implements flexibility requests (cf. D3.4). The

module provides the following five functions:

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 17 of 33

3.2.2.1 get_request_id(host, port, entity_id, access_token, version="v1"):

This function fetches a unique request ID from the platform.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

version (optional) String Version of API to be used (“v1” by default)

Table 6 Arguments of ret_request_id

Return Values Type Description
request_id String New and unique request ID

Table 7 Return values of get_request_id

3.2.2.2 post_request(host, port, entity_id, access_token, request,

version="v1"):

This function posts a flexibility request to the cloud platform. The request can be created

using the create_request() function. Cf. Section 3.2.2.5.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

request json Json formatted flexibility request object to be
posted

version (optional) String Version of API to be used (“v1” by default)

Table 8 Arguments of post_request

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 9 Return values of post_request

3.2.2.3 get_all_requests(host, port, entity_id, access_token, version="v1"):

This function returns a list of all requests from a given DSO.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the entity to be queried, e.g.
dso1

access_token String Valid access token

version (optional) String Version of API to be used (“v1” by default)

Table 10 Arguments of get_all_requests

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 18 of 33

Return Values Type Description
List of all flexibilityRequests json Json formatted list containing all flexibility

requests
Table 11 Return values of get_all_requests

3.2.2.4 delete_request(host, port, entity_id, access_token, request_id,

version="v1"):

This function can be used to delete a request object from the cloud platform as soon as it

becomes obsolete.

Argument Type Description
Host String Hostname or IP address of the server

Port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

request_id String ID of the request to be deleted

version (optional) String Version of API to be used (“v1” by default)

Table 12 Arguments of delete_request

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 13 Return values of delete_requests

3.2.2.5 create_request(request_id, timestamp, deadline, region_id,

flexible_power, duration, unit):

This function returns a json formatted request object in compliance with the specification

in D3.4.

Argument Type Description
request_id String Valid request ID, e.g. obtained from

get_request_id()

timestamp String Timestamp of creation (in ISO 8601 CET)

deadline String Deadline for offer acceptation (in ISO 8601
CET)

region_id String Affected grid region

flexibible_power Double Required amount of flexible power

duration Double Duration for which flexibility is required (in
sec)

unit String Unit of flexibility

Table 14 Arguments of create_requests

Return Values Type Description
flexibilityRequest json Json formatted flexibility request object

Table 15 Return values of create_requests

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 19 of 33

3.2.3 Flexibility Offers

The flexibilityOffers module handles and implements flexibility offers (cf. D3.4). The module

provides the following five functions:

3.2.3.1 get_offer_id(host, port, entity_id, access_token, version="v1"):

This function fetches a unique offer ID from the platform.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. agg1

access_token String Valid access token

version (optional) String Version of API to be used (“v1” by default)

Table 16 Arguments of get_offer_id

Return Values Type Description
offer_id String New and unique offer ID

Table 17 Return values of get_offer_id

3.2.3.2 post_offer(host, port, entity_id, access_token, offer, version="v1"):

This function posts a flexibility offer to the cloud platform. The offer can be created using

the create_offer() function, cf. Section 3.2.3.5.

Argument Type Description
Host String Hostname or IP address of the server

Port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

Offer json Json formatted flexibility offer object to be
posted

version (optional) String Version of API to be used (“v1” by default)

Table 18 Arguments of post_offer

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 19 Return values of post_offer

3.2.3.3 get_all_offers(host, port, access_token, version="v1"):

This function returns a list of all flexibility offers.

Argument Type Description
Host String Hostname or IP address of the server

Port String Port for API entry point

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 20 of 33

access_token String Valid access token

version (optional) String Version of API to be used (“v1” by default)

Table 20 Arguments of get_all_offers

Return Values Type Description
List of all flexibilityOffers json Json formatted list containing all flexibility

offers
Table 21 Return values of get_all_offers

3.2.3.4 delete_offer(host, port, entity_id, access_token, offer_id,

version="v1"):

This function can be used to delete an offer object from the cloud platform as soon as it

becomes obsolete.

Argument Type Description
Host String Hostname or IP address of the server

Port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

offer_id String ID of the offer to be deleted

version (optional) String Version of API to be used (“v1” by default)

Table 22 Arguments of delete_offer

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 23 Return values of delete_offer

3.2.3.5 create_offer(offer_id, entity_id ,timestamp, deadline, region_id,

flexible_power, granularity, duration, unit, activation_time,

flex_price, flex_type, currency):

This function returns a json formatted offer object in compliance with the specification in

D3.4.

Argument Type Description
offer_id String Valid offer ID, e.g. obtained from

get_offer_id()

timestamp String Timestamp of creation (in ISO 8601 CET)

deadline String Deadline for offer acceptation (in ISO 8601
CET)

region_id String Affected grid region

flexibible_power Double Required amount of flexible power

granularity Double Granularity the flexibility can be requested
with

duration Double Duration for which flexibility is required (in
sec)

unit String Unit of flexibility

activation_time String Time of planned activation (in ISO 8601 CET)

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 21 of 33

flex_price Double Flexibility Price

flex_type String Type of offered flexibility

currency String Currency

Table 24 Arguments of create_offer

Return Values Type Description
flexibilityOffer json Json formatted flexibility offer object

Table 25 Return values of create_offer

3.2.4 Flexibility Activation

The flexibilityActivation module handles and implements flexibility activations (cf. D3.4).

The module provides the following five functions:

3.2.4.1 get_activation_id(host, port, entity_id, access_token, version="v1"):

This function fetches a unique flexibility activation ID from the platform.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso11

access_token String Valid access token

version (optional) String Version of API to be used (“v1” by default)

Table 26 Arguments of get_activation_id

Return Values Type Description
activation_id String New and unique activation ID

Table 27 Return values of get_activation_id

3.2.4.2 post_activation(host, port, entity_id, aggregator, access_token,

flexibility_activation, version="v1"):

This function posts a flexibility activation request to the cloud platform. The activation

request can be created using the create_activation() function, cf. Section 3.2.4.5.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

aggregator String ID of aggregator that shall receive the
activation

access_token String Valid access token

flexibility_activation json Json formatted flexibility activation object to
be posted

version (optional) String Version of API to be used (“v1” by default)

Table 28 Arguments of post_activation

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 22 of 33

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 29 Return values of post_activation

3.2.4.3 get_all_activations(host, port, entity_id, access_token, aggregator,

version="v1"):

This function returns a list of all flexibility activation requests.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

aggregator String ID of aggregator who’s activations are
requested

version (optional) String Version of API to be used (“v1” by default)

Table 30 Arguments of get_all_activations

Return Values Type Description
List of all flexibilityActivations json Json formatted list containing all flexibility

activations for one particular aggregator
Table 31 Return values of get_all_activations

3.2.4.4 delete_activation(host, port, entity_id, access_token, aggregator,

activation_id, version="v1"):

This function can be used to delete an activation object from the cloud platform as soon as

it becomes obsolete.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. dso1

access_token String Valid access token

aggregator String ID of aggregator who’s activation should be
deleted

activation_id String ID of the activation to be deleted

version (optional) String Version of API to be used (“v1” by default)

Table 32 Arguments of delete_activation

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 33 Return values of delete_activation

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 23 of 33

3.2.4.5 create_activation(activation_id, timestamp, offer_id, flexible_power,

granularity, duration, unit, activation_time, flex_price, flex_type,

currency):

This function returns a json formatted activation object in compliance with the

specification in D3.4.

Argument Type Description
activation_id String Valid activation ID, e.g. obtained from

get_activation_id()

timestamp String Timestamp of creation (in ISO 8601 CET)

offer_id String ID of related offer that was accepted

flexibible_power Double Required amount of flexible power

granularity Double Granularity the flexibility can be requested
with

duration Double Duration for which flexibility is required (in
sec)

unit String Unit of flexibility

activation_time String Time of planned activation (in ISO 8601 CET)

flex_price Double Flexibility Price

flex_type String Type of offered flexibility

currency String Currency

Table 34 Arguments of create_activation

Return Values Type Description
flexibilityActivation json Json formatted flexibility activation object

Table 35 Return values of create_activation

3.2.5 Flexibility Activation Acknowledgement

The flexibilityActivationACK module handles and implements flexibility activation

acknowledgements (cf. D3.4). The module provides the following five functions:

3.2.5.1 post_activation_ack(host, port, entity_id, access_token,

flex_activation_ack, version="v1"):

This function posts a flexibility activation acknowledgment to the cloud platform. The

activation acknowledgment can be created using the create_activation_ack() function, cf.

Section 3.2.4.5.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. agg1

access_token String Valid access token

flex_activation_ack json Json formatted flexibility activation ACK
object to be posted

version (optional) String Version of API to be used (“v1” by default)

Table 36 Arguments of post_activation_ack

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 24 of 33

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 37 Return values of post_activation_ack

3.2.5.2 get_all_activation_acks(host, port, access_token, aggregator,

version="v1"):

This function returns a list of all flexibility activation acknowledgments.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

access_token String Valid access token

aggregator String ID of aggregator who’s activation ACKs are
requested

version (optional) String Version of API to be used (“v1” by default)

Table 38 Arguments of get_all_activation_acks

Return Values Type Description
List of all flexibilityActivations json Json formatted list containing all flexibility

activation ACKS for one particular aggregator
Table 39 Return values of get_all_activation_acks

3.2.5.3 delete_activation_ack(host, port, access_token, aggregator,

activation_ack_id, version="v1"):

This function can be used to delete an activation acknowledgment object from the cloud

platform as soon as it becomes obsolete.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

access_token String Valid access token

aggregator String ID of aggregator who’s activation ACK should
be deleted

activation_ack_id String ID of the activation ACK to be deleted

version (optional) String Version of API to be used (“v1” by default)

Table 40 Arguments of delete_activation_ack

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 41 Return values of delete_activation_ack

3.2.5.4 create_activation_ack(ack_id, timestamp, offer_id, flexible_power,

granularity, duration, unit, activation_time):

This function returns a json formatted activation acknowledgment object in compliance

with the specification in D3.4.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 25 of 33

Argument Type Description
ack_id String Valid activation ACK ID

timestamp String Timestamp of creation (in ISO 8601 CET)

offer_id String ID of related offer that was activated

flexibible_power Double activated amount of flexible power

granularity Double Granularity the flexibility can be requested
with

duration Double Duration for which flexibility is required (in
sec)

unit String Unit of flexibility

activation_time String Time of planned activation (in ISO 8601 CET)

Table 42 Arguments of create_activation_ack

Return Values Type Description
flexibilityActivationACK json Json formatted flexibility activation ACK

object
Table 43 Return values of create_activation_ack

3.2.6 Flexibility Activation Unacknowledgement

The flexibilityActivationNACK module handles and implements flexibility activation

unacknowledgements (cf. D3.4). The module provides the following five functions:

3.2.6.1 post_activation_nack(host, port, entity_id, access_token,

flexibility_activation, version="v1"):

This function posts a flexibility activation unacknowledgment to the cloud platform. The

activation unacknowledgment can be created using the create_activation_nack() function,

cf. Section 3.2.4.5.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

entity_id String Entity name of the current user, e.g. agg1

access_token String Valid access token

flexibility_activation json Json formatted flexibility activation object to
be posted

version (optional) String Version of API to be used (“v1” by default)

Table 44 Arguments of post_activation_nack

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 45 Return values of psot_activation_nack

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 26 of 33

3.2.6.2 get_all_activation_nacks(host, port, access_token, aggregator,

version="v1"):

This function returns a list of all flexibility activation acknowledgments.

Argument Type Description
host String Hostname or IP address of the server

port String Port for API entry point

access_token String Valid access token

aggregator String ID of aggregator who’s activation NACKs are
requested

version (optional) String Version of API to be used (“v1” by default)

Table 46 Arguments of get_all_activation_nacks

Return Values Type Description
List of all flexibilityActivations json Json formatted list containing all flexibility

activation ACKS for one particular aggregator
Table 47 Return values of get_all_activation_nacks

3.2.6.3 delete_activation_nack(host, port, access_token, aggregator,

activation_ack_id, version="v1"):

This function can be used to delete an activation unacknowledgment object from the cloud

platform as soon as it becomes obsolete.

Argument Type Description
Host String Hostname or IP address of the server

Port String Port for API entry point

access_token String Valid access token

Aggregator String ID of aggregator who’s activation NACK should
be deleted

activation_ack_id String ID of the activation ACK to be deleted

version (optional) String Version of API to be used (“v1” by default)

Table 48 Arguments of delete_activation_nack

Return Values Type Description
server response (optional) json Json containing detailed error description, by

default empty
Table 49 Return values of delete_activation_nack

3.2.6.4 create_activation_nack(nack_id, timestamp, offer_id, flexible_power,

granularity, duration, unit, activation_time):

This function returns a json formatted activation acknowledgment object in compliance

with the specification in D3.4.

Argument Type Description
nack_id String Valid activation NACK ID

timestamp String Timestamp of creation (in ISO 8601 CET)

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 27 of 33

offer_id String ID of related offer that was activated

flexibible_power Double activated amount of flexible power

granularity Double Granularity the flexibility can be requested
with

duration Double Duration for which flexibility is required (in
sec)

unit String Unit of flexibility

activation_time String Time of planned activation (in ISO 8601 CET)

Table 50 Arguments of create_activation_nack

Return Values Type Description
flexibilityActivationNACK json Json formatted flexibility activation ACK

object
Table 51 Return values of create_activation_nack

3.3 Extensions to API Specification

While defining the abstract test suite (cf. Deliverable 3.6) and implementing the reference

implementation (this document) some gray zones in the formal API specification were

identified, as stated in Section 1.3. The following table provides an overview on the findings

and corresponding extensions to the API specification that solve these issues.

Finding
No.

Description Identified Solutions Chosen solution

001

It is undefined
who creates IDs
such as offer_id
or request_id.

Solution 1:
Every creating entity takes

responsibility for creating a unique
identifier. The structure of IDs

could be specified, e.g. by
specifying a fixed prefix for each

entity.

Solution 2:
The platform provides unique

identifiers upon request.

Both solutions are
feasible. Solution 2
has been added to

the reference
implementation.

002

How should an
aggregator

respond to a
flexibility request

when it cannot
offer any

flexibility?

Solution 1:
Aggregators that cannot provide
any flexibility do not respond to
the request. A DSO neglects all
aggregators that do not respond

within the given deadline.

Solution 2:
Aggregators create and post an

offer with a predefined amount of
flexibility (e.g. 0 or -1) to indicate
that they cannot provide feasible

flexibility.

Solution 2

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 28 of 33

Solution 3:
A new object could be defined to

announce the
renunciation for the current

request.

003

There are no rules
for plausibility
verification on
the platform.

Solution 1:
The specification could be

extended with a set of plausibility
checks that can be performed by

the server backend.

Solution 1

004

’How can the
platform prevent
irrelevant offers
such as already
invalid ones?

Solution 1:
The server-side handlers for the

getter functions could be
extended with a date filter and

other plausibility checks (cf.
finding 003)

Solution 1

005

Aggregators are
not informed that
they their offer
was rejected by

the DSO.

Solution 1:
A negative acknowledgment for

the aggregator could be
introduced.

Solution 2:

A timeout for receiving an
activation request could be

specified.

Solution 2

006

Following the
specification, only

immediate
flexibility

activation be
requested.

Solution 1:
The flexibility object (cf. D3.4)

that is part of the flexiblity
requests, offers, and activations

can be extended with an
“activation_time” attribute.

Solution 1

007

Type of
“duration” is not
coherent between
flexibilityOffers

(string) and
flexibilityRequests

(double)

Solution 1:
As the duration refers to a time
span and not to a date, it should
be of type double in both cases.

Solution 1

008

price_t defined in
the Flexbility

Activation
Request is defined
two times while
the currency is

missing

Solution 1:
This seems to be a typo and will

be updated.
Solution 1

Table 52 Listed extensions to API specification

3.4 InterFlex API Verification

In order to verify that the reference implementation of the InterFlex flexibility API is working

as expected the request-based flexibility negotiation scenario that has been defined in

Deliverable 3.4 was implemented using the client API. The demonstration is provided in the

examples directory of the repository. The sequence chart provided in Figure 3-2 illustrates

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 29 of 33

the data flow in the API demonstrator. In order to verify all features of the API, a second

aggregator was added to the verification scenario to show that the selection of one offer (in

this case basically the cheapest offer) succeeds.

Figure 3-2 Request-based Flexibility Negotiation

3.5 Summary

This chapter presented the implementation of the server backend and the client package of

the InterFlex flexibility API while focusing on the interface of the client API: its functions,

the arguments, and the return values thereof. During the two phases of defining the abstract

test suite and implementing the reference implementation, some major and minor

ambiguities or gray zones were also identified. Section 3.3 provides a list of these findings

as well as solutions to extend the specification. Finally, the request-based flexibility

negotiation has been implemented as a demonstrator to verify that the API behaves as

expected.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 30 of 33

4 OUTLOOK

This document presented the reference implementation of the InterFlex API for flexibility

aggregation as specified in Deliverable 3.4. In collaboration with partners within WP3, the

specification was updated in order to solve identified issues or gray zones in the

specification. The reference implementation has been verified with the abstract test suite

(cf. Deliverable 3.6) and the verification script that implements the request-based flexibility

negotiation.

The entire reference implementation, including the client interface, the server backend,

and an exemplary cloud platform setup, will be publicly available on [1]. Future extensions

and update to the specification will be published and documented in this repository.

Future releases could contain support for offering external services over the flexibility cloud

platform, support for subscriptions in order to reduce the communication overhead with the

platform, and minor bug fixes.

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 31 of 33

5 BIBLIOGRAPHY

[1] [Online] https://git.rwth-aachen.de/acs/public/deliverables/interflex/flexibilityplatfrom

[2] “InterFLEX D3.4 – Interoperable APIs Specification”, April 2019

[3] [Online] https://www.python.org/

[4] [Online] https://2.python-requests.org/en/master/#

[5] [Online] https://golang.org/

[6] [Online] https://github.com/gorilla/mux

[7] [Online] https://www.fiware.org/developers/

[8] [Online] https://docs.python.org/3/library/json.html

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 32 of 33

A. APPENDIX

Resource URI Allowed
Methods

Content Description

/authentication/token POST Login credentials Post credentials to receive
authentication response

/authentication/refresh POST Refresh token Post refresh token to re-
authenticate

/dsos/{dso}/flexibilityRequests POST flexibilityRequest Post a flexibility request to
the platform

 GET -- Receive a list of flexibility
requests

/dsos/{dso}/flexibilityRequests/requestId GET -- Get a unique request ID
from the platform

/dsos/{dso}/flexibilityRequests/{requestId} DELETE -- Delete the request
identified by {requestId}

/dsos/{dso}/flexibilityActivations/activationId

GET -- Get a unique activatonId
from the platform

/dsos/{dso}/flexibilityActivations/{agg} GET -- Get all flexiblityActiavation
from a particular DSO {dso}
to a particular aggregator
{agg}

 POST flexibilityActivation Post a flexibilityActivation
from one DSO {dso} to a
particular aggregator {agg}

/dsos/{dso}/flexibilityActivations/{agg}/{activationId} DELETE -- Delete a certain
flexibilityActivation object
referenced by {activationId}

/aggregators/flexibilityOffers GET -- Get a list of all flexibility
offers

/aggregators/{agg}/flexibilityOffers POST flexibilityOffer Post a flexibility offer

/aggregators/{agg}/flexibilityOffers/{offerId} DELTE -- Delete a certain flexibility
offer identified by {offerId}

D3.5 Open Reference Implementation

InterFlex – GA n°731289 Page 33 of 33

/aggregators/{agg}/flexibilityOffers/offerId GET -- Get a unique offer ID

/aggregators/{agg}/flexibilityActivations/acks GET -- Get a list of all activation
acknowledgments

 POST Flexibility Activation ACK Post an activation
acknowledgment

/aggregators/{agg}/flexibilityActivations/acks/{ackId} DELETE -- Delete a certain activation
acknowledgment referred
to by {ackId}

/aggregators/{agg}/flexibilityActivations/acks/ackId GET -- Get a unique flexibility
activation acknowledge-
ment ID from the platform

/aggregators/{agg}/flexibilityActivations/nacks GET -- Get a list of all activation un
acknowledgments

 POST Flexibility Activation
NACK

Post a new activation
unacknowledgment to the
platform

/aggregators/{agg}/flexibilityActivations/nacks/{nackId} DELETE -- Delete a certain activation
unacknowledgment
referred to by {ackId}

/aggregators/{agg}/flexibilityActivations/nacks/nackId GET -- Get a unique flexibility
activation
acknowledgement ID from
the platform

